Anchoring of Single Indium Atoms and Few-Atom Indium Clusters onto Graphene via Silicon Heteroatoms

Kenan Elibol,1,2,3 Clemens Mangler,1 David D. O'Regan,2,4 Kimmo Mustonen,1 Dominik Eder,5 Jannik C. Meyer,1,6 Jani Kotakoski,1 Richard G. Hobbs,2,3 Toma Susi,4 Bernhard C. Bayer1,5

1University of Vienna, Faculty of Physics, Boltzmannasse 5, A-1090, Vienna, Austria
2Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and the SFI Advanced Materials and Bio-Engineering Research Centre (AMBER), Dublin 2, Ireland
3School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
4School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
5Institute of Materials Chemistry, Vienna University of Technology (TU Wien), Getreidemarkt 9/165, A-1060 Vienna, Austria
6Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

Email: bernhard.bayer-skoff@tuwien.ac.at

Single atoms and few-atom nanoclusters are of high interest in catalysis and plasmonics, but pathways for their fabrication and placement remain scarce.[1] We report here the self-assembly of room-temperature-stable single indium (In) atoms and few-atom In clusters (2-6 atoms) that are anchored to substitutional silicon (Si) impurity atoms in suspended monolayer graphene membranes.[2] Using atomically resolved scanning transmission electron microscopy (STEM), we find that the symmetry of the In structures is critically determined by the 3- or 4-fold coordination of the Si “anchors”. All structures are produced without electron-beam induced materials modification. In turn, when activated by electron beam irradiation in the STEM, we observe in situ the formation, restructuring and translation of the Si-anchored In structures. Our results on In-Si-graphene provide a materials system for controlled self-assembly and heteroatomic anchoring of single atoms and few-atom nanoclusters on graphene.
